
Direction provinciale Oujda Angad	TCSF + TCPI +TCT	Année scolaire 2019/2020
Lycée Iala Asmae	Contrôle N°=1 - 1ére semestre Durée : 2heures	Professeur : Mouzouri

PHYSIQUE:

Exercice 1 : soit un corps (M) de masse m = 200g maintenu équilibre sur un plan incliné par rapport au plan horizontal (surface de la terre) (voir figure 1).

 Pour chacune des actions mécaniques suivantes ; mettez une croix dans la Case convenable.

A distance

2) Déterminer les caractéristiques du poids du corps (M) . et représenter cette force en utilisant l'échelle suivante : $(1N \leftrightarrow 1cm)$.

 $\underline{Exercice\ 2}:\ Un\ corps\ solide\ (S)\ de\ masse\ m=400g\ se\ d\'eplace\ sur\ un\ plan\ horizontal\ sous\ l'action$

d'une force constante \vec{F} d'intensité F=3N (voir figure 2).

On considère que le contact entre la surface inferieure et le plan horizontal se fait avec frottement , tel que :

- La composante tangentielle $R_T = 1N$.
- La composante normale $R_N = 4N$.
- 1) Faire l'inventaire des forces exercées sur le solide (S).
- 2) Déterminer les caractéristiques des forces appliquées sur le corps (S).
- 3) Représenter les forces appliquées sur le corps (S) ,en utilisant l'échelle $\{1cm \leftrightarrow 1N\}$.
- 4) Calculer le l'angle de frottement φ et en déduire le coefficient de frottement.

Exercice 3:

Un corps (S) de masse m =75kg est posé dans un point M à l'équateur de la surface de la terre à l'équateur. On donne l'intensité de champs de la pesanteur à la surface de la terre $g_0 = 7,78N/Kg$.

- 1) Calculer P_0 l'intensité de la pesanteur du corps (S) à la surface de la terre.
- 2) Donner l'expression de la force d'attraction gravitationnelle $F_{T/S}$ exercée par la terre de masse M_T et de rayon R_T sur le corps (S).
- 3) En admettant que l'intensité de la force d'attraction gravitationnelle $F_{T/S}$ est égale à l'intensité du poids P_0 ; établir l'expression de g_0 en fonction de M_T ; R_T et G la constante gravitationnelle.
- 4) Déterminer l'expression de g_h l'intensité de la pesanteur à l'altitude h de la surface terrestre.
- 5) Etablir la relation entre l'intensité de la pesanteur g_h à l'altitude h et l'intensité g_0 .
- 6) Quelle est l'intensité du poids du corps (S) à une altitude $h = \frac{3}{4}R_T$, conclure.

CHIMIE:

- 1) Définir les concepts suivants : espèce chimique ; substance, masse volumique, densité, la solubilité.
- 2) Compléter le tableau suivants.

Tests	Test au sulfate de	Test à l'eau de	Test au papier	Test à la liqueur
chimiques	cuivre II anhydre.	chaux.	pH.	de Fehling.
espèces				
chimiques mises				
en évidence				

- Soit une quantité de vinaigre d'une masse m = 630g et d'un volume $V = 500cm^3$.
 - 1.3) calculer la masse volumique du glycérol en gcm^{-3} et en $Kg.m^{-3}$.
 - 2.3) calculer la densité du glycérol . On donne la masse volumique de l'eau : $\rho_{eau}=1g.cm^{-3}$

1

1,5