Exercices sur l'équilibre d'un solide soumis à 3 forces non parallèles

Exercice 1:

Détermination d'une force d'origine électrostatique

La boule chargée d'une pendule électrostatique, de poids P = 0.03 N, est repoussée par un corps chargé.

A l'équilibre, le fil du pendule fait un angle $\alpha=6^{\circ}$ avec la verticale. On suppose que la force d'origine électrique s'exerçant sur la boule d'origine verticale.

Déterminer :

1-La force que la force d'origine électrique s'exerçant sur la boule.

2-La tension du fil.

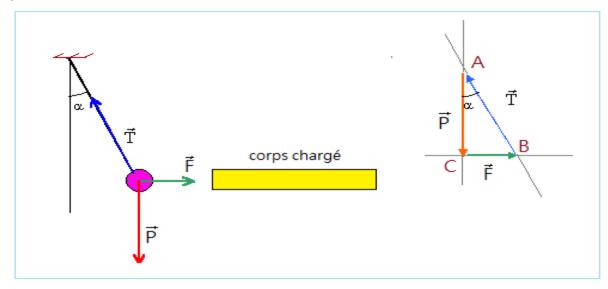
Comigé

1-Détermination de la force que la force d'origine électrique s'exerçant sur la boule :

Le solide à étudier est la boule du pendule.

Faisons le bilan des forces extérieures appliquées à la boule :

- -La tension \vec{T} du fil, force exercée par le fil sur la boule et dans le support est la direction du fil.
- -Le poids \vec{P} de la boule, force exercée par la terre sur la boule et dont la direction est verticale et l'intensité P=0.03~N.
- -La force électrique \vec{F} , force exercée par le corps chargé sur la boule chargée, dont la direction est horizontale.



A l'équilibre La somme vectorielle des trois forces est nulle :

$$\vec{P} + \vec{T} + \vec{F} = \vec{0}$$

Construisons le polygone des trois forces tel que :

Depuis l'origine A de P, traçons la droite d'action (D_1) de T inclinée de 6° par rapport à la verticale.

Depuis l'origine B deP, traçons la droite d'action (D_2) de F qui est horizontale.

L'intersection de deux directions (point C) correspond à l'extrémité de F.

Ayant choisi une échelle, il est facile d'en déduire F.

On peut aussi déterminer F par le calcul :

$$tan\alpha = \frac{AC}{AB} = \frac{P}{T} \Longrightarrow T = P \ tan\alpha$$
$$T = 0.03 \times tan(6^{\circ}) = 0.0032 \ N$$

Soit:

La force électrique a une faible intensité.

2-Détermination de la tension du fil :

$$cos\alpha = \frac{AB}{AC} = \frac{P}{T} \Longrightarrow T = \frac{P}{cos \alpha}$$

$$T = \frac{0.03}{coc(6^{\circ})} = 0.0302 N$$

Soit:

Exercice 2:

Un solide S de poids P=10N est posé sur une table inclinée d'un angle de $\alpha=30^\circ$ sur l'horizontale. Le contact entre le solide et la table est supposé sans frottements. Le solide est maintenu en équilibre sur la table grâce à un ressort dont l'axe est parallèle à la table et de raideur $k=200\ N/m$. Calculer l'allongement de ce ressort et déterminer la valeur de la réaction de la table sur le solide.

Comigé

1-Détermination l'allongement Δl du ressort:

Le solide à étudier est le corps S

Faisons le bilan des forces extérieures appliquées à S:

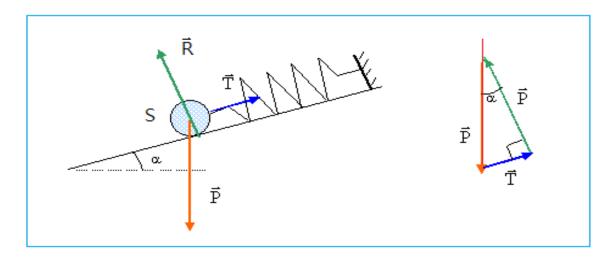
- -La tension \vec{T} du ressort, force exercée par le ressort sur le solide S sa direction est parallèle au plan incliné.
- -Le poids \vec{P} de la boule, force exercée par la terre sur la boule et dont la direction est verticale et l'intensité $P=10\ N$.

-La réaction \overrightarrow{R} , force exercée par le plan incliné sur le solide, dont la direction est perpendiculaire au plan incliné.

A l'équilibre La somme vectorielle des trois forces est nulle :

$$\vec{P} + \vec{T} + \vec{F} = \vec{0}$$

Construisons le polygone des trois forces tel que :



$$cos\alpha = \frac{R}{P} \Longrightarrow R = Pcos\alpha$$

$$R = 10 \times cos30^{\circ} = 8.7 N$$

$$sin\alpha = \frac{T}{P} \Longrightarrow T = Psin\alpha$$

Soit:

Soit:

$$T = 10 \times \sin(10^\circ) = 5 N$$

La tension du ressort est proportionnelle à son allongement :

$$T = k\Delta l \implies \Delta l = \frac{T}{k}$$

$$\Delta l = \frac{5}{200} = 0.025 m = 2.5 cm$$

Soit:

Exercice 3:

Un voyageur tire une valise de masse m=8.5~kg sur un sol horizontale, à l'aide d'une lainière. La direction de la lainière fait un angle $\alpha=30^\circ$ avec l'horizontale. La valise glisse d'un mouvement de translation rectiligne uniforme. La tension de la lainière pour valeurT=8.0~N.

Le mouvement de la valise se fait avec frottement.

1-Faire l'inventaire des forces exercées sur la valise. Donner les caractéristiques connues de ces forces.

- 2-Quelle égalité vectorielle doit vérifier ces forces ?
- 3-Calculer la valeur de la force de frottement
- 4-En déduire La valeur de la réaction \vec{R} , force exercée par le plan incliné sur la valise.

Corrigé

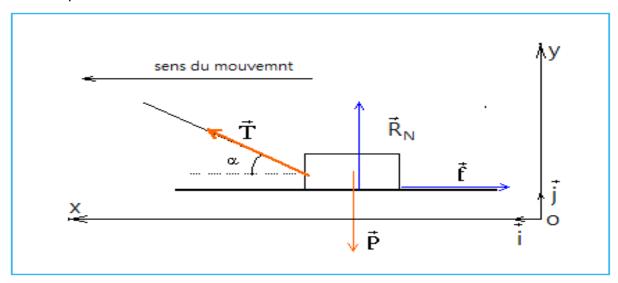
1- L'inventaire des forces exercées sur la valise :

La valise est soumise à :

Son poids \vec{P} , de direction vertical, de sens vers le bas, sa valeur $P=mg=8.5\times9.8=83.3~N$ La tension \vec{T} exercée par la lanière, de direction oblique de sens vers le haut et d'intensité T=8.0~NL'action du support représentée par les vecteur \vec{R}_N et \vec{f} :

 \vec{R}_N Perpendiculaire au plan, de sens vers le haut et sa valeur et inconnue.

 \vec{f} Parallèle au plan de sons contraire à la vitesse et sa valeur est inconnue.



2-L'égalité vectorielle que doivent vérifier ces forces :

Le mouvement est rectiligne uniforme, alors, d'après le principe d'inertie la somme vectorielle des forces est égale au vecteur nul.

$$\vec{P} + \vec{R}_N + \vec{f} + \vec{T} = \vec{0}$$

3- la valeur de la force de frottement :

On projette la relation vectorielle suivant un axe horizontale orienté dans le sens du mouvement :

$$T\cos\alpha - f = 0 \implies f = T\cos\alpha$$

 $f = 8 \times \cos(30^\circ) = 6.93 N$

4- La valeur de la réaction \vec{R}

Soit

$$\vec{R} = \vec{R}_N + \vec{f}$$

$$R^2 = R_N^2 + f^2 \implies R = \sqrt{R_N^2 + f^2}$$

On projette la relation vectorielle suivant un axe verticale orienté vers le haut :

$$R_{N} - P + T \sin\alpha = 0 \implies R_{N} = P - T \sin\alpha$$
 Soit
$$R_{N} = 83,3 - 8 \times \sin(30^{\circ}) = 79,3 \text{ N}$$

$$R = \sqrt{R_{N}^{2} + f^{2}} \implies R = \sqrt{79,3^{2} + 6,93^{2}} = 79,3 \text{ N}$$

Exercice 4:

Un bloc parallélépipédique de masse m=200kg est immobile sur un plan incliné d'un angle $\alpha=20^\circ$ par rapport à l'horizontale. Le bloc est soumis à l'action d'une corde parallèle à la ligne de la plus grande pente du plan incliné.

Le coefficient de frottement entre le bloc et le plan incliné est noté μ et a pour valeur 0,5 .

- 1-Calculer la valeur des composantes normale et tangentielle de la réaction du plan incliné.
- 2-Déterminer la valeur de la tension de la corde.

Corrigé

1- la valeur des composantes normale et tangentielle de la réaction du plan incliné La valise est soumise à :

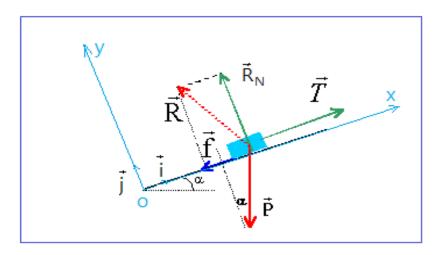
Son poids \vec{P} ,

La tension \vec{T} exercée par la corde

L'action du support \overrightarrow{R} représentée par les vecteur \overrightarrow{R}_N et \overrightarrow{f} :

 \vec{R}_N Perpendiculaire au plan, de sens vers le haut et sa valeur et inconnue.

 \vec{f} Parallèle au plan de sons contraire à la vitesse et sa valeur est inconnue.



Le mouvement est rectiligne uniforme, alors, d'après le principe d'inertie la somme vectorielle des forces est égale au vecteur nul.

$$\vec{P} + \vec{R}_N + \vec{f} + \vec{T} = \vec{0}$$

On projette la relation vectorielle suivant un axe perpendiculaire ai plan incliné et orienté vers le haut :

$$R_N - P\cos\alpha = 0 \implies R_N = P\cos\alpha$$

 $R_N = 200 \times 9.8 \times \cos(20^\circ) = 1842 N$

Le coefficient de frottement :

$$\mu = \frac{f}{R_N} \implies f = \mu. R_N$$
$$f = 0.5 \times 1842 = 921N$$

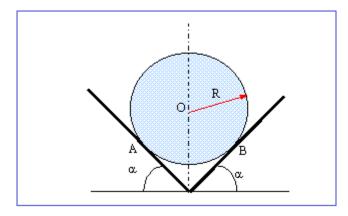
2-Détermination de la valeur de la tension de la corde :

On projette la relation vectorielle suivant un axe parallèle au plan incliné et orienté dans le sens du mouvement :

$$-Psin\alpha - f + T = 0 \implies T = Psin\alpha + f$$
$$T = 200 \times 9.8 \times \sin(20^\circ) + 921 = 1591N$$

Exercice 5:

Une sphère de rayon $R=5\,cm$ de masse $m=0.5\,kg$ est immobile dans une cannelure $=45^\circ$, on suppose qu'il n'y a aucun frottement. Déterminer les caractéristiques des forces exercées par la cannelure sur la sphère.



Corrigé

La bille est soumise à trois forces :

Son poids \vec{P} son intensité :

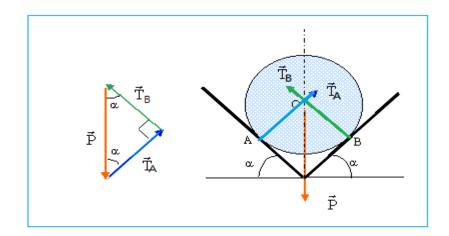
 $P = mg = 0.5 \times 9.8 = 4.9 N$

à l'action du support A : $\overrightarrow{T_A}$

À l'action du support B : $\overrightarrow{T_B}$

A l'équilibre la somme vectorielle des forces est nulle.

$$cos\alpha = \frac{T_A}{P} \implies T_A = Pcos\alpha$$



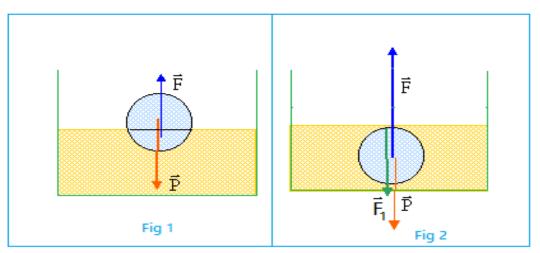
$$T_A = T_B = 4.9 \times \cos(45^\circ) = 3.46 N$$

Exercice 6:

Un ballon en caoutchouc a o=pour volume $V=15dm^3$ et pour masse $\ m=700\ g$. Il flotte à la surface de l'eau.

- 1-Déterminer la valeur du volume immergé.
- 2-On applique une force \vec{F}_1 sur le ballon pour qu'il reste immobile sous l'eau .Quelles sont les caractéristiques de la force \vec{F}_1 .

Comigé



1-Détermination de la valeur du volume immergé :

Figure1:

Le ballon est en équilibre, soumis à son poids P et à la poussée d'ArchimèdeF. A l'équilibre ces deux forces sont opposées et ont même valeur.

$$P=mg$$

$$F=poids\ du\ volume\ émmergé=
ho_{eau}V_{im}g$$

$$mg=
ho_{eau}V_{im}g$$

$$ho_{eau}V_{im}=m$$

$$V_{im}=rac{m}{
ho_{im}}\Longrightarrow V_{im}=rac{0.7}{1000}=7.10^{-4}dm^3=0.7\ cm^3$$

2-Les caractéristiques de la force \vec{F}_1 :

Figure 2:

Le ballon est en équilibre, soumis à son poids P et à la poussée d'Archimède F et à la force F_1 . A l'équilibre la somme vectorielle des forces est égale au vecteur nul.

$$\vec{P} + \vec{F} + \vec{F}_1 = \vec{0}$$

On projette la relation vectorielle suivant un axe verticale orienté vers le bas :

$$P + F_1 - F = 0$$
$$F_1 = F - P$$

La nouvelle valeur de la poussée d'Archimède :

$$F = \rho_{eau}V_{ballon}g = 1000 \times 15.10^{-3} \times 9.8 = 147 N$$

Valeur du poids M

$$P = mg = 0.7 \times 9.8 = 6.86 N \approx 6.9N$$

Valeur de F_1 :

$$F_1 = 147 - 6.9 = 140.1N$$

Exercice 7:

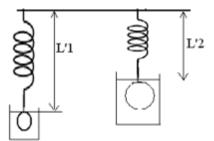
On pèse un objet métallique au moyen d'un dynamomètre ; on trouve $F_1=10,2N$. On immerge cet objet dans l'eau : le dynamomètre indique alors $F_2=8,1\ N$.

1-Calculer le poids et la masse de cet objet.

On donne : g = 9.8 N/kg.

2-Calculer le volume V de cet objet.

3-En déduire la masse volumique ρ de cet objet.



Corrigé

1-Le poids et la masse de cet objet :

Le dynamomètre mesure l'intensité du poids de cet objet. Le poids de cet objet est donc :

$$P = F_1 = 10,2N$$

Le poids du corps s'écrit : P = mg soit $m = \frac{P}{g} \implies m = \frac{10,2}{9,8} = 1,041 \, kg$

2- le volume V de cet objet :

La poussée d'Archimède set égale au poids du volume d'eau déplacée : $F=\rho_{eau}Vg$ ρ_{eau} : Masse volumique de l'eau (kg/m^3) V : le volume de l'eau déplacé (m^3) .

$$F_2 + F = P \implies F = P - F_2 = 10.2 - 8.1 = 2.1 \, N$$

$$F = \rho_{eau} Vg \implies V = \frac{F}{\rho_{eau} \, g} \implies V = \frac{2.1}{1000 \times 9.8} = 2.14. \, 10^{-4} \, m^{-3} = 0.214 \, L = 214 \, mL$$

3-La masse volumique ρ de cet objet :

Masse volumique de l'objet $\rho(kg/m^3) = \frac{masse\ de\ l\ objet(kg)}{volume\ de\ l\ objet(m^3)}$

$$\rho = \frac{m}{V} \implies \rho = \frac{1,041}{2,14.10^{-3}} = 4858 \, kg. \, m^{-3}$$